Continuidad en un punto

Def:
$$y = f(x)$$
 es continua en $x = a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

Si la función está definida de distinta forma a la izquierda que a la derecha de a (funciones definidas a trozos) los límites laterales tienen que coincidir:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$$

• Las funciones elementales son continuas en su dominio.

Operaciones de funciones continuas

Si las funciones f y g son continuas en x = a, entonces f + g, f - g y f g son continuas en a. Si $g(a) \neq 0$, $\frac{f}{g}$ es continua en a.

Si f es continua en a y g es continua en f(a), entonces $g \circ f$ es continua en a.

Continuidad lateral

Def: y = f(x) es continua a la derecha de $a \Leftrightarrow \lim_{x \to a^+} f(x) = f(a)$ **Def:** y = f(x) es continua a la izquierda de $a \Leftrightarrow \lim_{x \to a^-} f(x) = f(a)$

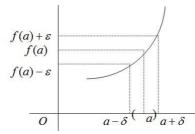
Continuidad en un intervalo

Def: Una función y = f(x) es continua en un intervalo abierto (a, b) si es continua en todos los puntos del intervalo

Def: Una función es continua en un intervalo cerrado [a, b] si es continua en el abierto (a, b) y continua a la derecha de a y a la izquierda de b. ($\lim_{x \to a^+} f(x) = f(a)$ y $\lim_{x \to b^-} f(x) = f(b)$)

Teorema de conservación del signo

"Si y = f(x) es continua en x = a y $f(x) \ne 0 \implies \exists$ un entorno de a en el que la función tiene el mismo signo que f(a)"



Teorema de acotación

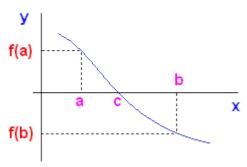
"Si y = f(x) es continua en $x = a \implies \exists$ un entorno de a en el que la función está acotada, $H \leq f(x) \leq K$ "

Tipos de discontinuidad			
DISCONTINUIDAD	Evitable $\exists \lim_{x \to a} f(x) = L$	No existe $f(a)$	y d a x ∃ f(a)
		$f(a) \neq L$	$f(a)$ $f(a)$ $f(a) \neq L$
	Inevitable No existe $\lim_{x \to a} f(x)$	De salto finito $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$	$L^{-} = f(a)$ $Q \qquad \qquad X$
		De salto infinito $\lim_{x \to a^{-}} f(x) = \infty$ o $\lim_{x \to a^{+}} f(x) = \infty$ o los dos son infinitos	o ai X
		De 2 ^a especie o esencial No existe el límite o no existe la función a uno de los lados de <i>a</i>	$f(x) = \operatorname{sen} \frac{1}{x}$

Teoremas de continuidad en un intervalo cerrado

Teorema de Bolzano (de la existencia de raices)

"Si y = f(x) es continua en el int ervalo cerrado [a,b] $\Rightarrow \exists c \in (a,b) / f(c) = 0$ " $y \text{ el signo}(f(a)) \neq signo(f(b))$



Teorema de Darboux (de los valores intermedios)

$$"Si y = f(x) \text{ es continua en } [a,b] \\ x_1 \prec x_2 \in [a,b] \text{ con } f(x_1) \neq f(x_2) "$$
 $\Rightarrow f \text{ toma en } [x_1,x_2] \text{ todos los valores entre } f(x_1) y f(x_2) "$

Teorema de acotación en un intervalo cerrado

"Si una función es continua en un intervalo cerrado [a, b], entonces está acotada en él"

Teorema de Weierstrass

"Si una función es continua en un intervalo cerrado [a, b], entonces alcanza el máximo y el mínimo absolutos en el intervalo"

